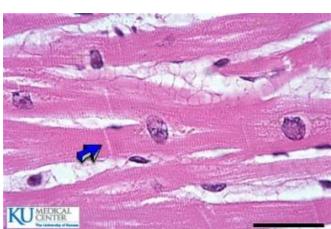

NOTES

for the

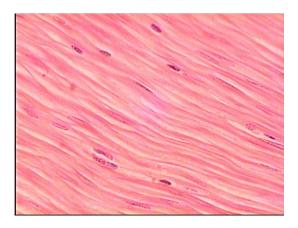
MUSCULAR SYSTEM

Anatomy & Physiology 2016 Johnson

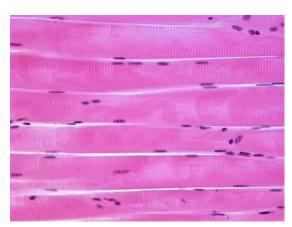

I. Muscular System

A. Specialized tissue that does one thing: shorten.

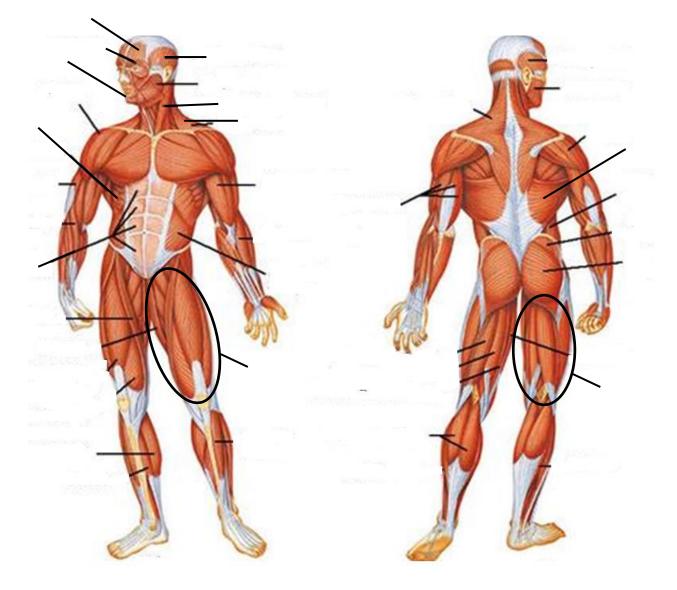
B. Functions:


- 1. Movement (of body, blood, food, etc.).
- 2. Stabilize joints.
- 3. Posture (tiny adjustments so you don't fall down).
- 4. Heat generation (75% of muscle energy lost as heat)

- C. Three muscle types:
 - 1. Cardiac Muscle
 - a. Only in heart
 - b. Moves blood
 - c. One nucleus per cell
 - d. Involuntarily controlled


- e. Striated (banded appearance)
- f. Cells synchronize their contractions through intercalated discs.

- 2. Smooth Muscle
 - a. Walls of hollow organs.
 - b. Move food & wastes.
 - c. No striations.
 - d. One nucleus per cell.



- e. Cells synchronize to produce "peristaltic waves".
- f. Involuntarily controlled slow contractions.

- 3. Skeletal Muscle
 - a. Attached to bone.
 - b. Move entire body.
 - c. Striated & multinucleate.
 - d. Voluntarily controlled

Muscles to Know (p182&184)	Posterior (p184)
Anterior (p182)	Trapezius
Temporalis	Triceps
Frontalis	Latissimus dorsi
Masseter	Gluteus maximus
Orbicularis oris	Hamstring group
Orbicularis oculi	Gastrocnemius
Sternocleidomastoid	
Platysma	
Deltoid	
Pectoralis major	
External intercostals	
Biceps	
Rectus abdominis	
External oblique	
Quadriceps group	
Tibialis anterior	

D. <u>Criteria for Naming Muscles</u>: <u>L.A.D.S.N.O.R.</u> (link to LADSNOR PowerPoint) (Standard Deviants ~4:00min-8:00min

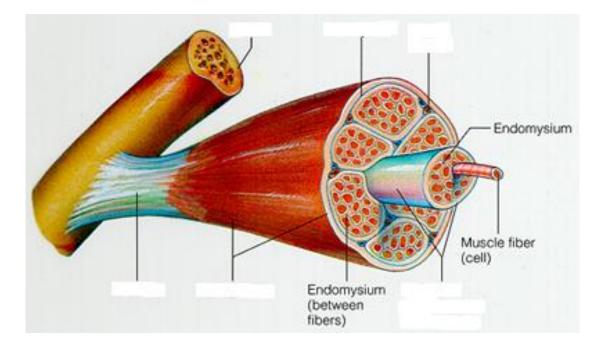
(Standard Deviants ~4:00min-8:00min)

	Criteria Description	Examples
L		
Α		
D		
S		
Ν		
0		
R		

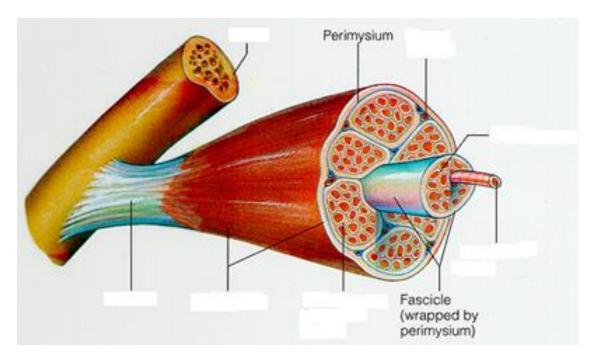
	Criteria Description	Examples
L	Location	Temporalis, Rectus abdominus, External oblique, Orbicularis oculi
Α	Action	Masseter
D	Direction of Fibers	External oblique
S	Shape	Deltoid, Trapezius, Platysma
N	Number of Origins	Biceps, Triceps, Quadriceps
0	Origin & Insertion	Sternocleidomastoid
R	Relative Size	Gluteus maximus

- E. Muscle Groupings
- 1. Muscles usually occur in pairs b/c can only pull.
- 2. Let's use arm curls as an example:
- 3. Prime Mover & Antagonist
 - a. Prime Mover the muscle responsible for most of a movement.

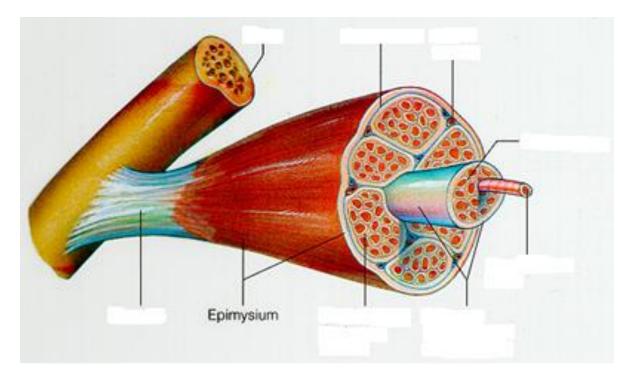
EX) bicep

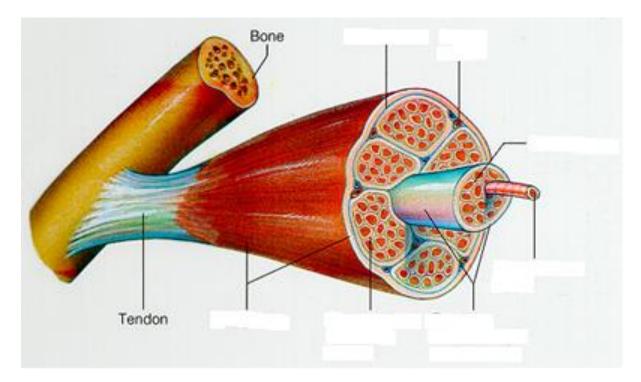

b. Antagonist – the muscle that does the reverse action of the prime mover.

EX) Tricep

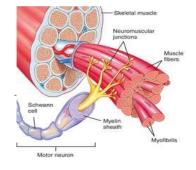

- Synergist muscles that help the prime mover.
 EX) other smaller upper arm muscles
- Fixators specialized synergists that stabilize joints and/or muscle origins to prevent unnecessary movement.
 EX) muscles of back, abdomen, shoulders

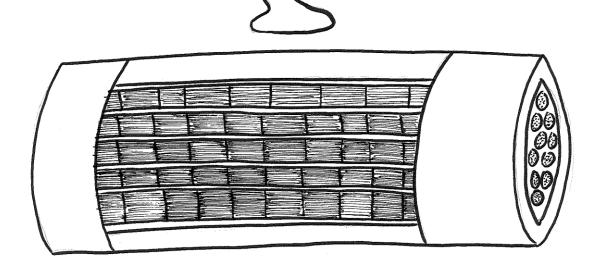
F. Structure of Skeletal Muscle

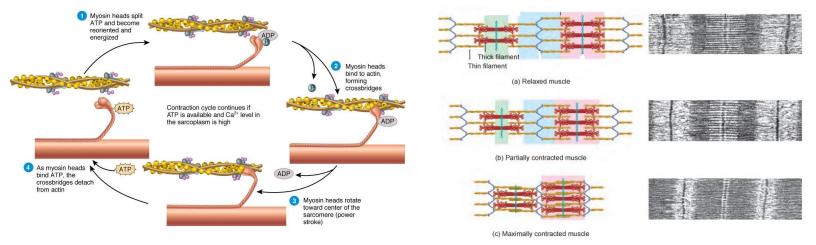

- 1. How a muscle is organized:
 - a. Each **fiber** is wrapped in a **<u>connective tissue</u>** layer called the **<u>endomysium</u>**.


 b. The <u>fibers</u> are bundled into groupings called <u>fascicles</u> which are wrapped in a <u>connective tissue</u> called the <u>perimysium</u>.

c. The <u>fascicles</u> are bundled to form a <u>muscle</u> and wrapped in a c.t. layer called the <u>epimysium</u>.


d. The <u>epimysium</u> extends beyond the muscle to form the <u>tendon</u> that <u>attaches the muscle to bone</u>.




II. Muscle Contractions

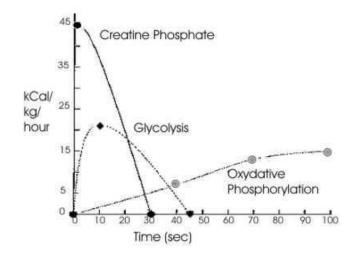
A. Motor Unit – one nerve and the muscle cells that it

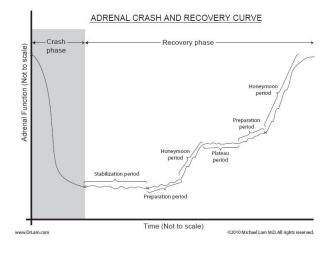
stimulates.

- 1. Electrical impulse travels down length of the nerve to the neuromuscular junction.
- 2. Neurotransmitter (acetylcholine) released across the gap.
 *if enough ACh is released, the action potential is reached
- 3. Sodium ions outside the muscle cell move into the cell, upsetting the chemical balance in the muscle cell.
- 3. When the balance is upset, the protein filaments **actin** and **myosin** slide past each other (<u>Sliding Filament Model</u>).

B. Types of Contractions

- 1. Isotonic Contractions
 - Successful muscle shortening when stimulated by a nerve.
 - Results in **movement**.
 - EX) walking, lifting, etc.


2. Isometric Contractions

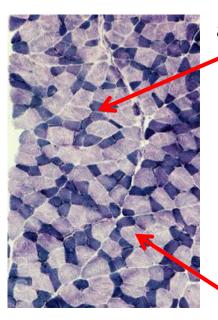

- Muscles do not shorten when contracting.
- <u>No movement</u>.
- Pushing against wall, lifting a bus, etc.
- C. Contractions and Oxygen Use
 - 1. Aerobic Muscle Contractions
 - Glucose breakdown that uses oxygen.
 - Glucose use is efficient.
 - 1 glucose molecule completely broken down into 36 ATP's
 - Light exercise.

- 2. Anaerobic Muscle Contractions
 - Glucose breakdown that does not use oxygen.
 - Glucose use is inefficient:
 - $\,\circ\,$ 1 glucose yielding only 2 ATP's
 - $\,\circ\,$ Excess glucose turned into lactic acid
 - About 2.5 times faster than aerobic contractions.
 - Fatigued after 30-40 seconds.

B. Fatigue

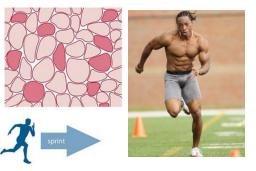
- 1. The inability for a muscle cell to contract despite being stimulated to do so by a nerve.
- 2. Happens when muscles are over-worked.
- 3. Caused by a lack of oxygen, insufficient ATP, and a buildup of lactic acid.

How does this happen?


III. Changes to Muscle Size

- A. Muscle Tone skeletal muscles are always in a state of mild contraction, even when "relaxed".
 - Maintains posture.
 - Keeps them ready for contraction.

- B. Hypertrophy increase in muscle size.
 - Increased number of fibers, connective tissue and blood vessels in response to prolonged forceful muscle activity.
 - Occurs if muscle contracts to at least
 75% of its maximum tension.


3. Fast & Slow Twitch Muscle Fibers

- a. Slow-Twitch Muscle Fibers:
 - Steady tug
 - High endurance
 - Aerobic energy use
 - Much globin, mitochondria, blood vessels give a dark color.

b. Fast-Twitch Muscle Fibers:

- Explosive movements
- Fatigue quickly
- Anaerobic energy use 🏾 🎢 💷
- Less globin, mitochondria, blood vessels give a lighter color

C. Atrophy – decrease in muscle size

- 1. Results from prolonged lack of use
- 2. Causes:

a. Temporary – cast limb, long bed rest, space travel, etc.

b. Permanent

belly sticks out due to

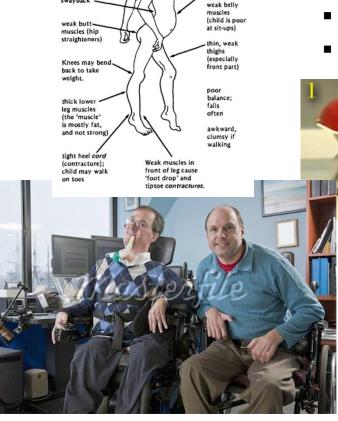
- Nerve injuries
- Disease

FYI: Diseases and permanent injuries are uncommon in the muscular system because of the massive amount of blood flow to muscles.

fibrous scar

degeneration

Duchenne muscular dystropy


tissue Fatty

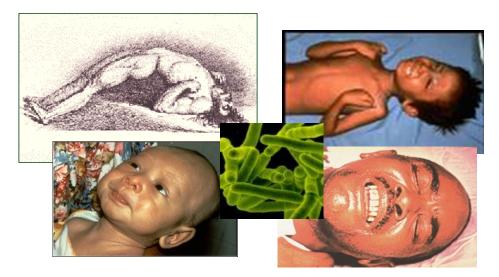
Muscular Dystrophy

- congenital (inherited) disorder
- muscle fibers slowly destroyed and replaced by scar tissue.
- Diagnosed b/w 2-6 years of age (mostly boys).
- Lose ability to move.
- Usually pass away by early adulthood.

 Image: Sector of the sector

Normal skeletal muscle

shoulders and arms are held back awkwardly when walking


swayback

\circ Fibromyalgia

- congenital (inherited) disorder
- constant aches, pains, stiffness and tenderness in muscles.
- cause unknown, but possibly low pain threshold in brain resulting in increased sensitivity to stimuli.
- mostly females (90%) under 40 years of age.

\circ Tetanus

- Constant contraction of all muscles.
- Caused by toxin (tetanospasmin) produced by a certain bacterium (*Clostridium tetani*).
- Not transmitted b/w individuals.
- Death from respiratory arrest.

\circ Trichinosis

- Parasitic worm embeds in skeletal muscle.
- Intense pain and weakness.
- Source: undercooked pork.

