NOTES

for the

SKELETAL SYSTEM

Anatomy & Physiology 2016 Johnson

The Skeletal System

- I. System includes 4 basic parts:
 - A. Bones (206 of 'em)
 - B. Joints
 - C. Cartilages
 - D. Ligaments

- II. Bones have 5 basic functions:
 - A. Support
 - **B.** Protection
 - Skull protects brain
 - Vertebrae protects spinal cord
 - Ribs protect organs
 - C. Movement
 - Used by muscles as levers
 - D.Storage
 - Of fat and minerals (esp. Ca)
 - E. Hematopoiesis
 - Blood cell formation in marrow
 - 15 million red blood cells *per second!!!*

III. Bones classified by:

A. Density (2 types)

- Compact solid and smooth-looking
- Spongy small "needles" with open spaces

Compact bone

Spongy bone

Compact

Bone

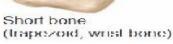
B. Shape (4 types)

1. Long

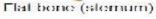
- Longer than wide
- Shaft with head at both ends
- Most limb bones
- Mostly made of compact bone

2. Short

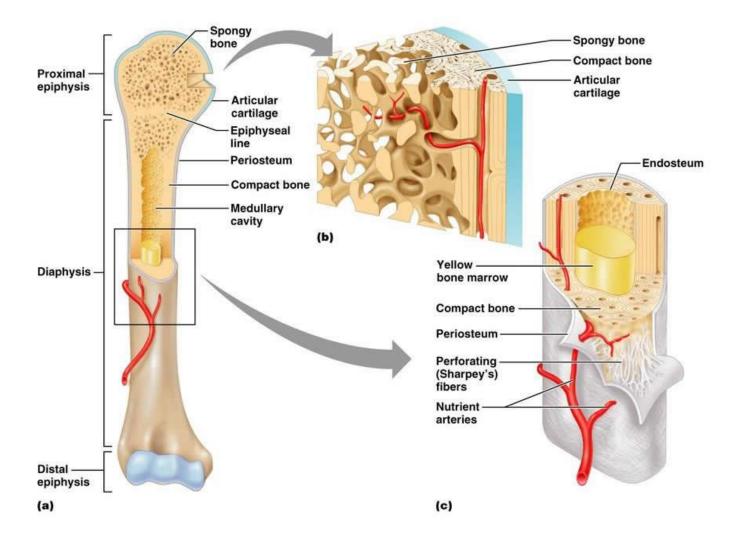
- Cube-shaped
- Wrist & ankle
- Mostly made of spongy bone


3. Flat

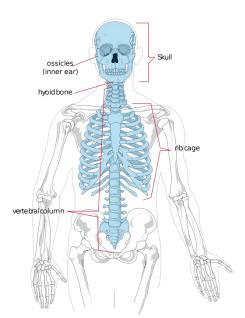
- Thin, flat, curved
- Protection or muscle attachment
- Skull, ribs, sternum
- 4. Irregular
 - Everything else
 - Vertebrae & hip Bones



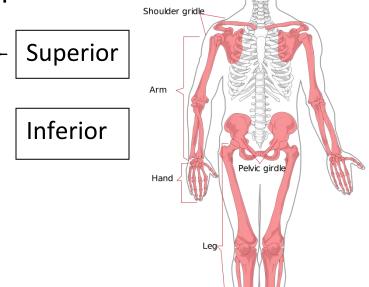
Irregular bone (vertebra)



Long bone (humerus)


Spongy Bone

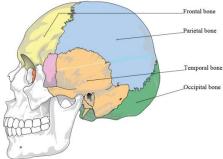
Yellow Marrow


IV. Structure of a Long Bone

- V. The skeleton is divided into two parts:
 - A. Axial Skeleton
 - Along the longitudinal axis of the body.
 - 2. Three major divisions:
 - Skull
 - Vertebral column (spine)
 - Bony thorax (ribs)

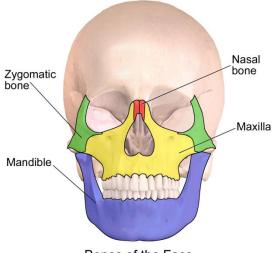
- **B.** Appendicular Skeleton
 - 1. Parts that attach to the axial skeleton
 - 2. Four major divisions:
 - Pectoral girdle⁻
 - Upper limbs
 - Pelvic girdle
 - Lower limbs

Foo

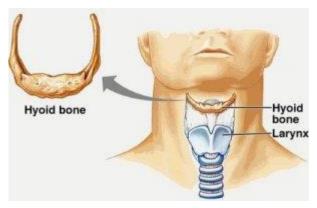

VI. The Axial Skeleton (skull, spine, ribs)

A. Skull

- 1. Formed by two sets of bones: cranium & facial
- 2. Cranium large, flat bones that enclose and protect brain.


Bones to know in cranium:

- Frontal forehead
- Parietal sides & top
- Temporal lower sides with many parts:
 - External auditory meatus ear canal
 - Styloid process attachment point for neck muscles
 - Zygomatic process thin bridge
 - Mastoid process large bump for neck muscle attachment
- Occipital back
 - Foramen magnum large hole that spinal cord enters


3. Facial Bones

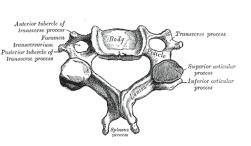
- Maxilla top jaw
- Zygomatic bone cheekbone
- Nasal bones bridge of nose
- Mandible lower jaw

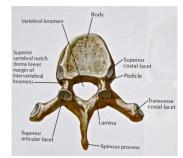
Bones of the Face

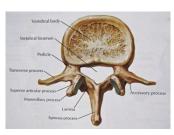
- 4. Hyoid Bone
 - Suspended in anterior of neck
 - Attachment point for tongue, larynx, neck muscles

- B. Vertebral Column
 - 1. General Structure:
 - a. 26 irregular bones that perform 2 functions:
 - Support weight of the body
 - Surround & protect the spinal cord

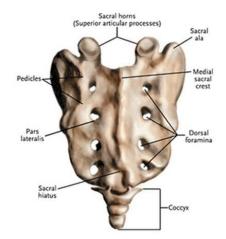
b. Vertebrae are separated by pads of fibrocartilage called intervertebral discs.


- Cushion the vertebrae
- Make spine more flexible


- c. Vertebral column has an S-shape
 - Primary curvatures (thoracic & sacral regions)
 - Secondary curvatures (cervical & lumbar regions)


2. Anatomy of a Vertebrae:

3. Five regions of the Vertebral Column


- a. Cervical Vertebrae
 - 7 most superior vertebrae (neck)
 - C1 (atlas) and C2 (axis) work together to allow head to pivot
 - Have transverse foramen for blood vessels to the brain
- b. Thoracic Vertebrae
 - 12 vertebrae
 - All have facets for rib attachment
- c. Lumbar Vertebrae
 - 5 large vertebrae
 - Bear most of body's weight

- d. Sacrum
 - 5 fused vertebrae
 - Attach to hip bones
- e. Coccyx
 - 3 small fused vertebrae
 - "tailbone"

C. Bony Thorax: three general structures

- 1. Sternum
 - a. Three flat bones
 - Manubrium
 - Body
 - Xiphoid process
 - b. Attached to first 7 ribs
 - c. Much blood production in its marrow

2. Ribs

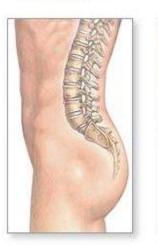
- a. 12 pairs
- b. All attached to vertebral column
- c. True ribs (superior 7 pairs) directly attached to sternum
- d. False ribs (inferior 5 pairs) attached indirectly or not at all to sternum.
 *last 2 pair called "floating ribs" b/c lack all sternal attachment.
- 3. Thoracic Vertebrae
 - Form posterior axis of thoracic cage.

D. Axial Skeleton Pathophysiology

1. Abnormal Curvatures

a. Scoliosis – spine curved laterally

b. Kyphosis – exaggerated thoracic curvature
 -- "hunchbacked"



c. Lordosis – exaggerated lumbar curvature -- belly & butt stick out

Good Lumbar Posture Lordosis Normal spine

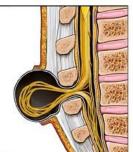
Lordosis of the spine

Exaggerated lumbar curve

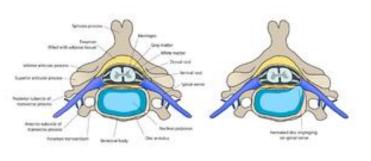
2. Spinal Diseases

a. Spina bifida – vertebrae do not close around spinal cord during embryonic development.

Spina bifida occulta


Meningocele

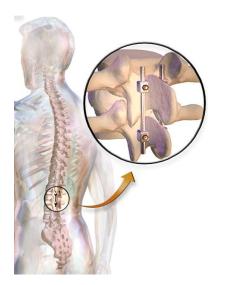
Myelomeningocele

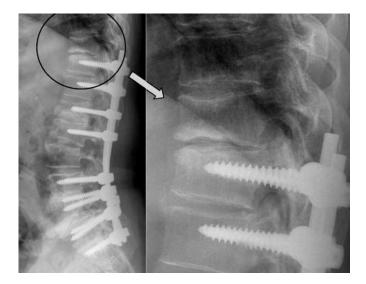


Defect in vertebrae allows spinal nerves to protrude

3. Spinal Injuries & Repair

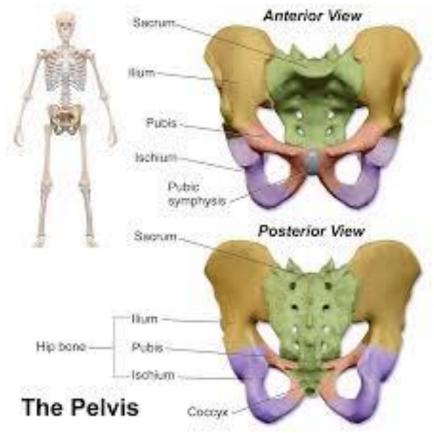
- a. Disc Herniation ("slipped disc")
 - Outer cartilage tears allowing soft interior to bulge out.





b. Spinal Fusion

• Surgery to join vertebrae

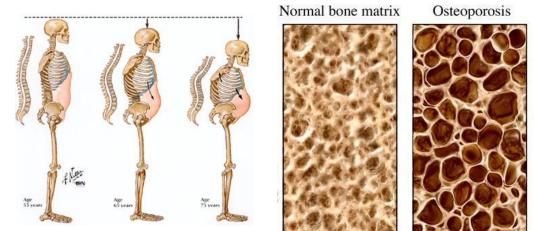


- VII. The Appendicular Skeleton
 - Girdles (Pelvic & Pectoral)
 - Limbs (Arms & Legs)
 - 126 total bones
 - A. Superior A.S.
 - 1. Pectoral Girdle (Shoulder)
 - Clavicle braces arms out
 - Scapula slides freely / much muscle attachment
 - 2. Upper Limb Bones
 - Humerus
 - Radius & Ulna
 - Carpals, Metacarpals, Phalanges

B. Inferior A.S.

1. Pelvic Girdle (Hip)

- Pelvis made of 3 bones: Ilium, Ischium, Pubis
- Male v. Female: pubic arch (90°)



2. Lower Limb Bones

- Femur
- Patella
- Tibia & Fibula
- Tarsals, Metatarsals, Phalanges

VIII. Disorders of the Skeletal System

- A. Osteoporosis
 - Bones become full of holes and brittle
 - Lack of Ca⁺ uptake

B. Rickets

- Growing bones in children do not calcify.
- Lack of vit D which helps bones absorb Ca⁺.
- Crooked, bowed legs.

C. Osetogenesis Imperfecta

- "brittle bone disease"
- Strengthen bones through supplements and steel rods

D. Bone Spurs

- Bony projections along bones
- Age, injury, or disease

IX. Joints

A. Functions

- 1. Hold bones together.
- 2. Make skeleton flexible.

B. Classified by **structure** and/or **function**:

Classification by STRUCTURE	Classification by FUNCTION
Fibrous -Connective tissue -No movement	
Cartilaginous -cartilage -little movement	
Synovial -fluid-filled cavity -much movement	

Classification by	Classification by
STRUCTURE	FUNCTION
Fibrous	Immoveable
-Connective tissue	-mainly in axial skeleton
-No movement	-skull sutures
Cartilaginous	Slightly Moveable
-cartilage	-mainly in axial skeleton
-little movement	-vertebrae
Synovial	Freely Moveable
-fluid-filled cavity	-mainly in appendicular skeleton
-much movement	-elbows, ankles, knees, fingers, etc.

- C. Most freely moveable joints are synovial.
 - 1. Four characteristics of f.m. / synovial joints
 - a. Articular cartilage at bone ends
 - b. Fibrous capsule

Synovial Joint

Synovial membrane

Articular cartilage -Fibrous joint capsule

> Joint cavity filled / with synovial fluid Ligaments

- c. Joint cavity with fluid
- d. Reinforcing ligament

*why do synovial joints "crack"?

2. Six types of synovial joints a. Plane – slight slipping (carpals) b. Hinge – one plane of movement (elbow) c. Pivot – twisting (radius & ulna) d. Condyloid – two planes of mvmt. ----flat surfaces -(knuckles) e. Saddle – two planes of movement ---curved surfaces -(base of thumb) f. Ball & Socket – many planes of mvmt (shoulder)

D. Joint Disorders

- 1. Arthritis
 - a. Inflammation or degrading of a joint.
 - b. Pain, stiffness, swelling
 - c. Basic types:
 - Osteoarthritis
 - -cartilage between bones wears out.
 - -typical in older or overweight people.

Osteoarthritis

Healthy knee joint

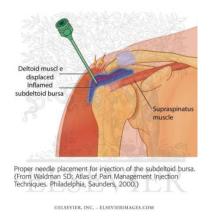
Hypertrophy and spurring of bone and erosion of cartilage

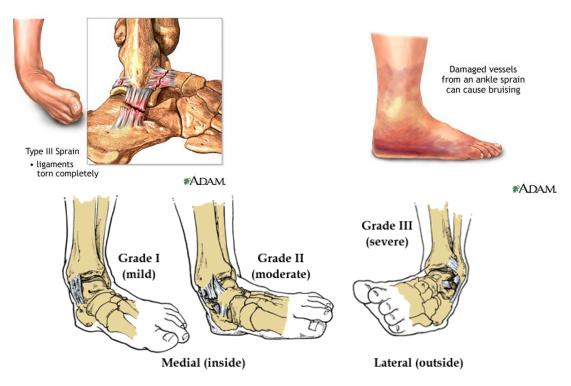
ADAM.

Figure 2

Rheumatoid arthritis -autoimmune cause (immune system attacks own synovial membrane)


Rheumatoid Arthritis




2. Bursitis

- a. Bursae (synovial membrane) damaged
- b. Aka. "water on the knee"
- c. Cortisone may be injected in to the bursae.

- 3. Sprains
 - a. Supporting ligaments in a joint are stretched or torn.
 - b. Little blood supply to dense connective tissue results in slow healing.

X. Bone Fractures & Healing

A. Types of Fractures

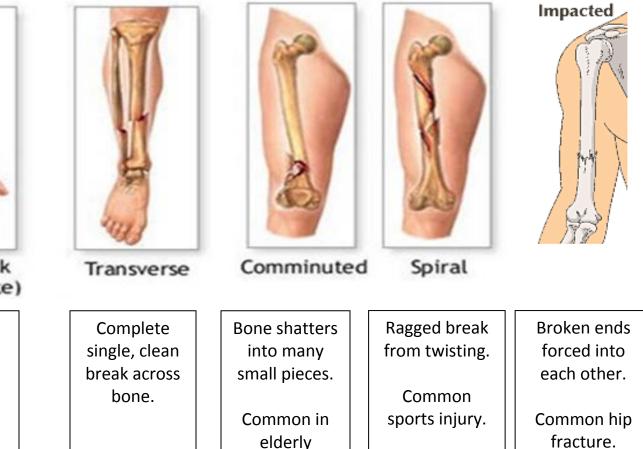
1. Each of the following types can be either simple (closed) or compound (open)

Clean break that does NOT penetrate skin.

Aka: "closed" fracture

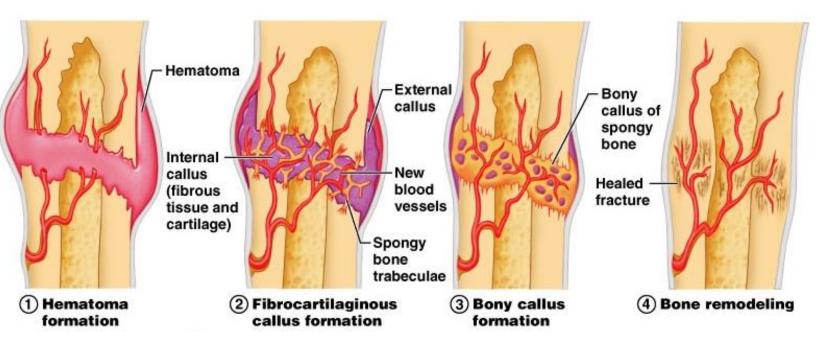
Broken bone ends penetrate skin.

> Aka: "open" fracture



Greenstick (incomplete)

Incomplete break.


Common in children.

2. Common Fracture Patterns

C. Medical Treatment through Reduction

- 1. Closed Reduction bone ends are put back into place by hand without surgery.
- 2. Open Reduction bone ends are realigned with surgery and fixed in place with screws, pins and/or plates.
- D. <u>Steps in the Bone Healing Process:</u>

